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DIFFERENTIABILITY VIA DIRECTIONAL DERIVATIVES 

KA-SING LAU AND CLIFFORD E. WEIL 

ABSTRACT. Let F be a continuous function from an open subset D of a 
separable Banach space X into a Banach space Y. We show that if there is a 
dense G8 subset A of D and a Gs subset H of X whose closure has nonempty 
interior, such that for each a E A and each x E H the directional derivative 
DxF(a) of F at a in the direction x exists, then F is Giteaux differentiable 
on a dense G8 subset of D. If X is replaced by R , then we need only 
assume that the n first order partial derivatives exist at each a E A to 
conclude that F is Frechet differentiable on a dense, G8 subset of D. 

1. Introduction. It is known that if F is a real valued function on an open 
subset D in Rn whose first order partial derivatives exist and are continuous, 
then F is differentiable on D. Stepanoff [7] showed that there exists a 
continuous function on R2 such that the partial derivatives exist almost 
everywhere but the function is nowhere differentiable. In contrast to this 
result, we prove in this note that the existence of partial derivatives on a 
dense G,6 subset will imply that the function is differentiable on a dense G,6 
subset. 

Throughout, we assume the scalar field is R. Let X and Y be locally convex 
spaces and let F be a function from an open subset D of X into Y. We say 
that F is Gateaux differentiable at a E D if there exists a continuous linear 
operator DF(a): X -* Y such that for any x E X, 

DF(a)(x) = lim t (F(a + tx) - F(a)) 

(the limit depends on x). We call DF(a) the Gateaux differential of F at a. 
When the above limit exists it is called the directional derivative of F at a in 
the direction x and is denoted by DxF(a). The reader may refer to [9] for a 
detailed discussion of the Gateaux derivative and its relations with other 
derivatives. Our main theorem is the following: Suppose F is a continuous 
function from an open subset D of a separable Banach space X into a Banach 
space Y and suppose there exists a dense G6; subset A of D and a G,6 subset H 
of X whose closure has nonempty interior such that for a E A, the directional 
derivative DxF(a) exists for each x E H. Then F is Gateaux differentiable on 
a dense G6; of D. 

In ?2, we give some lemmas. In ?3, we prove the main theorem as well as 
some other related results. 
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2. Some lemmas. A (Hausdorff) topological space X is called a Baire space 
if the intersection of any sequence of open dense subsets in X is dense in X. It 
may be shown that dense G6 subsets and open subsets of Baire spaces and, of 
course, complete metric spaces are Baire spaces. 

We omit the proof of the following obvious lemma. 

LEmMA 2.1. Let Gn be a sequence of open subsets in a Baire space X with 

U? Gn dense in X. Let A be a subset of X such that for each n, A n Gn 
contains a dense G6 in Gn. Then A contains a dense G6 in X. 

Let X and Y be two sets and let A be a subset ofX X Y. For each x E X, 
we use AX to denote the x-section of A; i.e. AX = {Y E Y: (x, y) E A}. 

LEmMA 2.2. Let X and Y be Baire spaces with Y second countable, and let A 
be a dense G6 subset of X x Y. Then {x E X: AX is a dense G,6 subset of Y} 
contains a dense G6 subset of X. 

PROOF. Assume first that A is an open dense subset of X X Y. Let 
A = U a(Ua X Va) where Ua and Va are open subsets of X and Y, respec- 
tively, let { Wn } be a countable base for the topology on Y, and for each n let 

Bn = U a{Ua: Va n Wn #7 0). It is clear that Bn is open and easy to show 
that Bn is dense in X. Since X is a Baire space, B = n , IBn is a dense G6 
subset of X. Let x E B. For each n there exists an a such that x E Ua and 
va nWn W,' 0. It follows that AX is dense in Y. Noting that Ax is open 
completes the proof in the case where A is open. 

Let A = n' 1A where each An is an open dense subset of X X Y. For 
each n there is a dense G6 subset Bn of X such that Bn C {x E X: (An)x is 
a dense G6 subset of Y}. Let B = nfl,,Bn. Since X is a Baire space, B is a 
dense G6 subset of X. Let x E B. Then for each n (An)x is a dense G6 subset 
of T. Since Y is a Baire space, nf L(A,)X is a dense G6 subset of Y. But 

n 1(A,)X = AX, which completes the proof. 

LEmMA 2.3. Let X be a Baire space, let Y be a metric space, and let F: 
X x { t: 0 < I < rr) -* Y, where r is a fixed positive number. Suppose that for 
each 0 < ItI < r, F(x, t) is continuous in x, and that there is a dense G,6 set A 
in X such that limIO F(a, !) = Fo(a) exists for all a E A. Then there is a 
dense G,6 set E in X such that for each a E E, 

lim F (x, t) = Fo (a). 
(x, t)--(a, 0), t=#0 

PROOF. Fo is a function of Baire class 1. Let E1 = { a E A: Fo is continuous 
at a). Then E1 is a dense G,6 set in A and, hence, in X [3, Theorem 2]. Let M 
and N be positive integers, and let 

AMN = {X E X: if 0 <ItI < N and 

0 <Isl < N', then p(F(x, t), F(x, s)) < M' }. 

Then AMN is a closed set and, for each M, U = 1AMN D A. So since X is a 
Baire space, GM = U '= 1AO is an open dense subset of X. Let E2 = 
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nf= I Gm. Since X is a Baire space, E2 is a dense G8 set in X as is 
E = E1 n E2. 

Let a E E and let e > 0. Since Fo is continuous at a there is a neighbor- 
hood U1 of a such that if y E U1 n A, then p(Fo(y), Fo(a)) < e/2. There is a 
positive integer M such that M' < E/2. Since a GE E2, a G GM. Thus there 
is an N such that a E AON. Let U = U1 n AON. Let x E U and 0 < Itl < 
N'-. Then for eachy E U n A, 

p(F(x, t), Fo (a)) < p(F(x, t), F(y, t)) 

+ p(F(y, t), Fo (y)) + p(Fo (y), FO (a)). 
Since U n A is dense in U and since F(y, t) is continuous as a function of y, 

lim p(F(x, t), F(y, t)) = 0. 

Sincey E Un A, and since 0 < Ijt < N , 

p(F(y, t), Fo (y)) = lim p(F(y, t), F(y, s)) < M -. 

Thus 

lim sup p(F(y, t), Fo(y)) < M < e/2. 
y--x 

Consequently, p(F(x, t), Fo(a)) < e. 

LEmMA 2.4. Let X be a Banach space and let A be a dense G8 in an open 
subset U of X. Then the linear hull of A equals X. 

PROOF. Suppose lin A =# X. Then there exists an x in X \ lin A so that 
u n (u + x) =# 0. It is easy to see that both A n u n (u + x) and (A + 
x) n u n (u + x) contain dense G0 subsets of U n (U + x) and are dis- 
joint, which is a contradiction. 

3. The theorems. 

THEOREM 3.1. Let X and Y be separable Banach spaces. Let D be an open 
subset of X, and let F: D -* Y be continuous. Suppose there is a dense G86 subset 
A of D such that for each a E A, the directional derivative D F(a) exists for 
each x E H where H is a G0 subset of X which is dense in a nonempty open 
subset U of X. Then F is Gateaux differentiable on a dense G8 subset of D. 

PROOF. For each positive integer k let 

Ak = {(a, x) GE D X U: 11t-v(F(a + tx) - F(a))II< k 

forO KItl< k-1}. 

Since F is continuous, Ak is closed, and since D,F(a) exists for each a GE A 
and x G H, A x H C U k k lAk. Thus U lAk is dense in D X U, which is 
an open subset of the complete metric space X X X and, consequently, a 
Baire space. It follows that U ?= 1AO? is dense in D X U. Note that each AO is 
the countable union of Dkj X Ukj, where Dkj is open in D and Ukj is open in 
U. By Lemma 2.1 it suffices to prove that for each] Dkj contains a suitable 
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dense G6 set. For notational ease Dkj and Ukj will be denoted simply by Dk 

and Uk, respectively. 
Define F: Dk X Uk X {t: O < Itl < k-l} Yby 

F(a, x, t) = t-I(F(a + tx) - F(a)). 

For each (a, x) E (A n Dk) X (H n Uk), limtO F(a, x, t) = D.F(a). A 
n Dk and H n Uk are dense G6 subsets of Dk and Uk, respectively. Hence 
(A n Dk) X (H n Uk) is a dense G6 subset of Dk X Uk and, as was pointed 
out in the above paragraph, Dk X Uk is a Baire space. So by Lemma 2.3 there 
exists a dense G6 subset E of (A n Dk) X (H n Uk) such that for each 
(a, x) Ei E, 

lim F (a', x', t) = DxF(a). 
(a', x', t)-(a, x, 0), t0#O 

By Lemma 2.2 there is a dense G6 subset B of A n Dk, which is therefore a 
dense G6 subset of Dk, such that for each a E B, Ea is a dense G6 subset of 
H n Uk and, consequently, a dense G6 subset of Uk. 

Let a E B, x E Ea andy E X such that DYF(a) exists. Then 

lim t'-(F(a + t(x + y)) -F(a)) 

= lim t-'(F(a + tx + ty) - F(a + ty)) 
t--O 

+ lim t'-(F(a + ty) - F(a)) 
t--O 

= lim F (a + ty, x, t) + DYF(a) 
(a + ty, x, t)--(a, x, 0) 

=DxF(a) + DYF(a). 

So Dx+YF(a) exists and Dx+YF(a) = DxF(a) + DYF(a). Using the obvious 
fact that if DxF(a) exists and if a E R, then DaxF(a) exists and D,F(a) = 

aDxF(a), it is an easy matter to establish that 

{x E X: DxF(a) exists and for each y such that DYF(a) 
exists, Dx+YF(a) exists and Dx+YF(a) = DjF(a) + 

DYF(a)} 

is a subspace of X. Since it contains Ea Lemma 2.4 implies that it is X. That 
is, for all x E X, DxF(a) exists and for eachy E X, Dx+YF(a) = D,F(a) + 

DYF(a). Thus the operator (DF(a))(x) = DxF(a) is linear. Since Dk X Uk 5 
Ak, for all x E Uk, IIDxF(a)II S k; that is, the linear operator is bounded on 
a nonempty open set Uk and, hence, is bounded. 

If X = R', we let {e,, . .. , e,j be the natural basis, and let DiF denote the 
partial derivative of F in the ith coordinate. 

THEOREM 3.2. Let D C Rn be open, let Y be a separable Banach space, and 
let F: D -) Y be continuous. Suppose there is a dense G,8 subset A of D such 
that for each a E A and each i = 1, . .. , n, DiF(a) exists. Then F is (Frechet) 
differentiable on a dense G6 subset of D. 
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PROOF. For r > 0 let Dr = {x E D: dist(x, Rn \ D) > r}. By Lemma 2.1 
we need only prove the theorem on Dr for each r > 0. For each i = 1, ... , n 
define Fi: Dr X {t: 0 < ItI Kr) by 

Fi (a, t) = tv-'(F(a + te*) - F(a)). 

Then for each i = 1, ... , n and each a E A n Dr, imO F;(a, t) = DjF(a). 
By Lemma 2.3 for each i = 1, .I. , n there is a dense G6 subset Ai of Dr 

such that for each a E Ai, 

lim F (a', t) = DjF(a). 
(a', t)--(a, 0), t=#0 

Let E = n i2Ai. Then E is a dense G^subset of Dr. 
Let a E E. For each x E Rn \ {O} write x = 1j= ej, and for each i = 

2, . . ., n + 1, let ai = a + Y2-5Xjej. Then 

(n~I n 
ur 1xj7' F + x)-F(a)- i)XiF (a)I 

+--*i / 
n 

< 2 lrn jxjKOI(F(aj+i) - F(a) - XiDjF(a))j 
i=2 -* 

+ lim lxlI'I(F(a + X,e,) - F(a) - XiDiF(a))l 

n 

?< urni IF (a~iY-DjF(a) I 

+ lrn IX-'(F(a + X,e,) - F(a)) - DIF(a)j 
XI-*o 

=0. 

Suppose F is a continuous function from an open subset D of Rn into a 
Banach space Y and suppose that Di F, i = 1, ... , n, exists on a dense G' 
subset A in D. Then F satisfies the local Lipschitz condition on an open, 
dense subset in D. Indeed, if for each positive integer k, 

Ak = {a E D: 1t-'(F(a + tei) - F(a))II ?k, Itl k-1, i = 1, ... , n), 

then each Ak is closed and U lAk contains the set A. Hence the set 
U= U 0 1AO is an open dense set in D and F satisfies the local Lipschitz 
condition at each point a E U. 

THEOREM 3.3. Let F be a continuous function from an open subset D C Rn 

into R m. Suppose there exists a dense G,6 subset A C D such that DiF(a), 
i = 1, . .. , n, exist for each a E D. Then F is differentiable on a dense, 
measurable subset in D with positive (Lebesgue) measure. 

PROOF. It follows from' the above remark that F satisfies the local Lipschitz 
condition on an open, dense subset U in D. By a theorem of Rademacher 
([6], cf. also [2, p. 218]), F is differentiable a.e. on U and, hence, F is 
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differentiable on a dense set with positive measure. 
The theorem of Rademacher on the differentiability of Lipschitz mappings 

has been generalized by Mankiewicz [4], [5] and Christensen [1] into some 
classes of infinite dimensional Banach spaces. However, we remark that a 
Lipschitz function is not necessarily differentiable on any dense G,6 subset; an 
example was given by Zahorski in [8]. 

In the rest of this section, we will consider a map F from an open subset D 
of a separable Banach space X into a dual Banach space Y* with the weak* 
topology. The definition of Gateaux differentiable of F at a becomes: there 
exists a bounded linear operator DF(a) from X into Y* such that 

KDF(a)x,y> =lim t1 KF(a + tx) - F(a),y) forallx E X,y E Y. 

For convenience, we will call this the w*-Gateaux differential of F at a. We 
also call a function F: D -* Y* demicontinuous if F is continuous with respect 
to the weak* topology in Y*. 

THEOREM 3.4. Let X and Y be separable Banach spaces. Let D be an open 
subset of X and let F be a demicontinuous function from D into Y*. Suppose 
there exists a dense G6 subset A of D such that for each a E A, DxF(a) exists 
for each direction x E X. Then F is w*-Gateaux differentiable on a dense G6 in 
D. 

PROOF. For each a E A, x E X, 0 < 8 sufficiently small and y E Y, 
t-1KF(a + tx) - F(a),y) is a continuous function for ItI < S. Conse- 
quently, {1tK-F(a + tx) - F(a),y): 0 < ItI < 3) is a bounded set. By the 
uniformly boundedness principle, the set { jt -(F(a + tx) - F(a))II: 0 < It 
< 8 ) is also a bounded set. Let 

Ak = { (a, x) E D X X: |1v (F(a + tx) - F(a))Ij I k for all Itl < k-1}. 

By the demicontinuity and the lower semicontinuity of the norm, each Ak 's 

closed in D X X. Since U k lAk D A X X, the set U I OA2 is an open dense 
subset in D X X. 

It follows from the same argument as Theorem 3.1 that it suffices to prove 
the theorem on any open subset Dk where Dk X Uk C_ Ak?. The rest of the 
proof is also the same as Theorem 3.1; the only changes are: (i) when 
applying Lemma 2.3 to F, we have to observe that Y is separable, the image 
of F, which is contained in a bounded set in Y*, is w*-metrizable; (ii) in the 
proof of Dx+YF(a) = DxF(a) + DYF(a) we change 

lim t 1(F(a + t(x + y)) - F(a)) = etc. 

into 

lim ( t -1(F(a + t(x + y)) - F(a)),y) = etc. 

for each y E Y. 
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